An identity of symmetry for the Bernoulli polynomials
نویسندگان
چکیده
منابع مشابه
An Identity of Jack Polynomials
In this work we give an alterative proof of one of basic properties of zonal polynomials and generalised it for Jack polynomials
متن کاملSymmetry Properties of Higher-Order Bernoulli Polynomials
Let p be a fixed prime number. Throughout this paper Zp, Qp, and Cp will, respectively, denote the ring of p-adic rational integers, the field of p-adic rational numbers, and the completion of algebraic closure of Qp. For x ∈ Cp, we use the notation x q 1 − q / 1 − q . Let UD Zp be the space of uniformly differentiable functions on Zp, and let vp be the normalized exponential valuation of Cp wi...
متن کاملIDENTITIES OF SYMMETRY FOR THE HIGHER ORDER q-BERNOULLI POLYNOMIALS
Abstract. The study of the identities of symmetry for the Bernoulli polynomials arises from the study of Gauss’s multiplication formula for the gamma function. There are many works in this direction. In the sense of p-adic analysis, the q-Bernoulli polynomials are natural extensions of the Bernoulli and Apostol-Bernoulli polynomials (see the introduction of this paper). By using the N-fold iter...
متن کاملSome identities of symmetry for the degenerate q-Bernoulli polynomials under symmetry group of degree n
Recently, Kim-Kim Introduced some interesting identities of symmetry for qBernoulli polynomials under symmetry group of degree n. In this paper, we study the degenerate q-Euler polynomials and derive some identities of symmetry for these polynomials arising from the p-adic q-integral on Zp. AMS subject classification: 11B68, 11S80, 05A19, 05A30.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2008
ISSN: 0012-365X
DOI: 10.1016/j.disc.2007.03.030